Drone & Satellite Imagery Collection & Analysis

Advanced analytical techniques go beyond inter-band math, and may classify data into predefined fuzzy or map-like categories using machine learning techniques, compare imagery taken at different times to detect change, compar imagery taken at different angles to estimate elevation, or combine multiple source datasets to exploit the best qualities of each.

Elevation and Surface

Elevation and Surface models are constructed by calculating the offset in radar or image-based data acquired from different angles.

Change Detection

Analysis of imagery from different time periods to detect and understand changes. Examples include urban growth, deforestation, ice melting, and landslide detection.

Feature Extraction

Analysis of imagery to extract and identify buildings, roads, land covers, water extents, forests, etc. Once extracted, these items can be sorted, counted, and analyzed.


Spectral bands can be combined mathematically to emphasize characteristics such as:


Synthesizing data from multiple spectral bands, through ratio or coefficient-based transformations, can produce indices used to compare every point in an image on the same scale. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), for example, measure vegetation health and distinguish between types of plants, while others measure burn severity, mineral presence, water turbidity, mud, snow, and more. Responsive image


A simple form of satellite or drone image interpretation involves assigning invisible light bands to Red, Green, and Blue channels to create a false color image, in order to highlight hidden characteristics related to those bands. False color images can distinguish muddy water from muddy land, pinpoint fires, or clearly show the extent of a growing city. Responsive image

A scalable and cost-effective
approach to emphasize:
vegetation, water, urbanized
areas, forest fires, and more.


The satellite systems we use to capture, analyze, and distribute data about the Earth are improving every day, creating bold new opportunities for impact in how we manage our crops, protect our forests, plan our infrastructure, and more. From capturing imagery and developing processing pipelines to developing data products thar are easily viewable across any screen, we help intepret your issue from the sky.

Responsive image


High resolution commercial imagery is available up to .3m resolution, with revisit times varying quite a bit. Some sensors are tasked, or pointed to collect specific areas rather than always just collecting the area directly below. As a result, some areas may not be covered at all by tasked satellites. While there is still a premium for the highest resolution imagery (0.50m), medium to low resolution is suitable for many applications, and increasingly affordable or available at no cost.



Radiometric correction to correct for uneven sensor response over the whole image

Geometric correction to correct for geometric distortion due to Earth's rotation

Transformation to conform to a specific map projection system

Enhancement techniques such as grey level stretching to improve the contrast and spatial filtering for enhancing the edges

A typical serviced satellite image (bought or downloaded) includes several processing steps. From the raw image (Level 0), data are calibrated into units of physical reflectance (called Level 1 processing), and the image is geolocated and ortho-rectified following an elevation model of the terrain or Ground Control Points (GCP) of a certain Accuracy, under a geodetic reference frame (e.g. Mercator). Over large areas, several captures may need to be stitched together. T his product is usually referred as Level 2 or similar.

In many cases, the end user will only see the final image, either in a report or as an interactive map on the web, such as the maps in this report.


Satellites capture light in wavelengths that are outside the range of human vision, such as infrared or ultraviolet light, that can help to understand the surface characteristics of the reflecting substances. Different objects reflect these light frequencies in different ways, and common satellite analysis techniques combine human-visible and invisible images (called “spectral bands”) to characterize their subjects.

Taken together, the spectral response of each band creates a unique signature, known as a spectral curve, that can help communicate information about conditions within a single type of land cover. This includes calculating indices such as NDVI to assess vegetation or false coloring to isolate urbanized areas.


Enterprise grade services from Digital Globe, GeoEye, Planet offer faster access to new imagery, archival images and derived data products. Publicly available sources from LandSat and Sentinel also offer archival images, but in raw format, requiring image processing using tools such as GDAL and ImageMagick.

Conventional models of identifying, buying and delivering imagery are giving way to new cloud-based selection and delivery

models. Users can search through archival content from multiple suppliers to find the best suited imagery, buy the imagery through an enterprise subscription, and have it delivered online. As the value of raw pixels declines, there is greater innovation and competition to provide data products derived from imagery. At Vizonomy, we work with various partners to ensure that all our projects use the most optimal image possible, taking into account its cost, resolution, and timestamp.

Learn more about Vizonomy.

And who we work with...